Hepatic secretion of apoB-100 is impaired in hypobetalipoproteinemic mice with an apoB-38.9-specifying allele.
نویسندگان
چکیده
Apolipoprotein B (apoB) truncation-specifying mutations cause familial hypobetalipoproteinemia (FHBL). Lipoprotein kinetics studies have shown that production rates of apoB-100 are reduced by 70-80% in heterozygous FHBL humans, instead of the expected 50%. To develop suitable mouse models to study the underlying mechanism, apoB-38.9-only (Apob(38.9/38.9)) mice were crossbred with Apobec-1 knockout (Apobec-1(-/-)) mice or apoB-100-only (Apob(100/100)) mice to produce two lines of apoB-38.9 heterozygous mice that produce only apoB-38.9 and apoB-100, namely Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice. In vivo rates of apoB-100 secretion were measured using [35S]Met/Cys to label proteins and Triton WR-1339 to block apoB-100 VLDL lipolysis/uptake. Rates of secretion were reduced by 80%, rather than the expected 50%, in both Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice compared with those of the respective Apobec-1(-/-)/Apob(+/+) and Apob(100/100) control mice. Continuous labeling and pulse-chase experiments in primary hepatocyte cultures revealed that rates of apoB-100 synthesis by Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) hepatocytes were reduced to the expected 50% of those of the respective controls, but the efficiency of secretion of apoB-100 was significantly lower in apoB-38.9 heterozygous hepatocytes. The greater-than-expected decreases in apoB-100 production rates of FHBL heterozygous humans appear to be attributable to a defect in secretion rather than in the synthesis of apoB-100 from the unaffected apoB allele.
منابع مشابه
A targeted apoB38.9 mutation in mice is associated with reduced hepatic cholesterol synthesis and enhanced lipid peroxidation.
Familial hypobetalipoproteinemia (FHBL) due to truncation-specifying mutations of apolipoprotein B (apoB), which impair hepatic lipid export in very low-density lipoprotein (VLDL) particles, is associated with fatty liver. In an FHBL-like mouse with the apoB38.9 mutation, fatty liver develops despite reduced hepatic fatty acid synthesis. However, hepatic cholesterol contents in apoB38.9 mice ar...
متن کاملReduced intestinal fat absorptive capacity but enhanced susceptibility to diet-induced fatty liver in mice heterozygous for ApoB38.9 truncation.
Fatty liver is prevalent in apolipoprotein B (apoB)-defective familial hypobetalipoproteinemia (FHBL). Similar to humans, mouse models of FHBL produced by gene targeting (apob(+/38.9)) manifest low plasma cholesterol and increased hepatic triglycerides (TG) even on a chow diet due to impaired hepatic VLDL-TG secretive capacity. Because apoB truncations shorter than apoB48 are expressed in the i...
متن کاملAmino terminal 38.9% of apolipoprotein B-100 is sufficient to support cholesterol-rich lipoprotein production and atherosclerosis.
OBJECTIVE Carboxyl terminal truncation of apolipoprotein (apo)B-100 and apoB-48 impairs their capacity for triglyceride transport, but the ability of the resultant truncated apoB to transport cholesterol and to support atherosclerosis has not been adequately studied. The atherogenicity of apoB-38.9 was determined in this study by using our apoB-38.9-only (Apob38.9/38.9) mice. METHODS AND RESU...
متن کاملآدیپوسیتوکینها و متابولیسم VLDL: اثرات تنظیمی آدیپونکتین، مقاومت به انسولین و اجزای بافت چربی بر کینتیک apoB-100 VLDL
Background: Obesity is an escalating public health problem. It is a major risk factor for atherosclerosis, hypertension, and type 2 diabetes. Since circulating levels of the adipocytokins are associated with obesity and dyslipidemia, we investigated the relationship of plasma adipocytokine concentrations with VLDL apolipoprotein B (apoB)-100 kinetics in men. Methods: Plasma adiponectin, lepti...
متن کاملA targeted apolipoprotein B-38.9-producing mutation causes fatty livers in mice due to the reduced ability of apolipoprotein B-38.9 to transport triglycerides.
Nonphysiological truncations of apolipoprotein (apo) B-100 cause familial hypobetalipoproteinemia (FHBL) in humans and mice. An elucidation of the mechanisms underlying the FHBL phenotypes may provide valuable information on the metabolism of apo B-containing lipoproteins and the structure-function relationship of apo B. To generate a faithful mouse model of human FHBL, a subtle mutation was in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 45 1 شماره
صفحات -
تاریخ انتشار 2004